• 学习
  • 下载
  • 作文

当前位置:无忧教学库教学教育高中学习高中数学高三数学高三数学:概率训练题» 正文

高三数学:概率训练题

[01-02 16:35:25]   来源:http://www.51jxk.com  高三数学   阅读:8515

概要:高三数学章末综合测试题(10)概率一、选择题:本大题共12小题,每小题5分,共60分.1.从装有5只红球,5只白球的袋中任意取出3只球,有事件:①“取出2只红球和1只白球”与“取出1只红球和2只白球”;②“取出2只红球和1只白球”与“取出3只红球”;③“取出3只红球”与“取出3只球中至少有1只白球”;④“取出3只红球”与“取出3只白球”.其中是对立事件的有()A.①② B.②③C.③④ D.③D解析:从袋中任取3只球,可能取到的情况有:“3只红球”,“2只红球1只白球”,“1只红球,2只白球”,“3只白球”,由此可知①、②、④中的两个事件都不是对立事件.对于③,“取出3只球中至少有一只白球”包含“2只红球1只白球”,“1

高三数学:概率训练题,标签:高三数学课本|基础知识|教案,http://www.51jxk.com

高三数学章末综合测试题(10)概率

一、选择题:本大题共12小题,每小题5分,共60分.

1.从装有5只红球,5只白球的袋中任意取出3只球,有事件:

①“取出2只红球和1只白球”与“取出1只红球和2只白球”;

②“取出2只红球和1只白球”与“取出3只红球”;

③“取出3只红球”与“取出3只球中至少有1只白球”;

④“取出3只红球”与“取出3只白球”.

其中是对立事件的有(  )

A.①②     B.②③

C.③④     D.③

D解析:从袋中任取3只球,可能取到的情况有:“3只红球”,“2只红球1只白球”,“1只红球,2只白球”,“3只白球”,由此可知①、②、④中的两个事件都不是对立事件.对于③,“取出3只球中至少有一只白球”包含“2只红球1只白球”,“1只红球2只白球”,“3只白球”三种情况,与“取出3只红球”是对立事件.

2.取一根长度为4 m的绳子,拉直后在任意位置剪断,那么剪得的两段都不少于1 m的概率是(  )

A.14 B.13

C.12 D.23

C解析:把绳子4等分,当剪断点位于中间两部分时,两段绳子都不少于1 m,故所求概率为P=24=12.

3.甲、乙两人下棋,甲获胜的概率为30%,甲不输的概率为80%,则甲 、乙两人下一盘棋,你认为最为可能出现的情况是(  )

A.甲获胜 B.乙获胜

C.甲、乙下成和棋 D.无法得出

C解析:两人下成和棋的概率为50%,乙胜的概率为20%,故甲、乙两人下一盘棋,最有可能出现的情况是 下成和棋.

4.如图所示,墙上挂有边长为a的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为a2的扇形,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是(  )

A.1-π4 B.π4

C.1-π8 D.与a的取值有关

A 解析:几何概型,P=a2-πa22a2=1-π4,故选A.

5.从1,2,3,4这四个数中,不重复地任意取两个种,两个数一奇一偶的概率是(  )

A.16 B.25

C.13 D.23

D 解析:基本事件总数为6,两个数一奇一偶的情况有4种,故所求概率P=46=23.

6.从含有4个元素的集合的所有子集中任取一个,所取的子集是含有2个元素的集合的概率是(  )

A.310 B.112

C.4564 D.38

D解析:4个元素的集合共16个子集,其中含有两个元素的子集有6个,故所求概

率为P=616=38.

7 .某班准备到郊外野营,为此向商店定了帐篷,如果下雨与不下雨是等可能的,能否准时收到帐篷也是等可能的,只要帐篷如期运到,他们就不会淋雨,则下列说法正确的是(  )

A.一定不会淋雨 B.淋雨的可能性为34

C.淋雨的可能性为12 D.淋雨的可能性为14

D解析:基本事件有“下雨帐篷到”、“不下雨帐篷到”、“下雨帐篷未到”、“不下

雨帐篷未到”4种情况,而只有“下雨帐篷未到”时会淋雨,故淋雨的可能性为14.

8.将一颗骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为(  )

A.19 B.112

C.115 D.118

D解析:基本事件总数为216,点数构成等差数列包含的基本事件有(1,2,3),(1,3,5),(2,3,4),(2,4,6),(3,2,1),(3,4,5),(4,3,2),(4,5,6),(5,4,3),(5,3,1),(6,5,4),(6,4,2)共12个,故求概率为P=12216=118.

9.设集合A={1,2},B={1,2,3},分别从集合A和集合B中随机取一个数a和b,确定平面上的一个点P(a,b),记“点P(a,b)落在直线x+y=n上”为事件Cn(2≤n≤5,n∈N),若事件Cn的概率最大,则N的所有可能值为(  )

A.3 B.4

C.2和5 D.3和4

D解析:点P(a,b)的个数共有2×3=6个,落在直线x+y=2上的概率P(C2)=16;落在直线x+y=3上的概率P(C3)=26;落在直线x+y=4上的概率P(C4)=26;落在直线x+y=5上的概率P(C5)=16,故选D.

10.连掷两次骰子得到的点数分别为m,n,记向量a=(m,n)与向量b=(1,-1)的夹角为θ,则θ∈0,π2的概率是(  )

A.512 B.12

C.712 D.56

C 解析:基本事件总数为36,由cosθ=a•b|a|•|b|≥0得a•b≥0,即m-n≥0,包含的基本事件有(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共21个,故所求概率为P=2136=712.

11.在一张打方格的纸上投一枚直径为1的硬币,方格的边长(方格边长设为a)要多少才能使得硬币与方格线不相交的概率小于1% (  )

A.a>910 B.a>109

C.1

C解析:硬币与方格线不相交,则a>1时,才可能发生,在每一个方格内,当硬币的圆心落在边长为a-1,中心与方格的中心重合的小正方形内时,硬币与方格线不相交,故硬币与方格线不相交的概率P=(a-1)2a2.,由(a-1)2a2<1%,得1

12.集合A={(x,y)|x-y-1≤0,x+y-1≥0,x∈N},集合B={(x,y)|y≤-x+5,x∈N},先后掷两颗骰子,设掷第一颗骰子得点数记作a,掷第二颗骰子得数记作b,则(a,b)∈A∩B的概率等于 (  )

A.14 B.29

C.736 D.536

B解析:根据二元一次不等式组表示的平面区域,可知A∩B对应如图所示的阴影部分的区域中的整数点.其中整数点有(0,1),(0,2),(0,3),(0,4),(0,5),(1,0),(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2)共14个.现先后抛掷2颗骰子,所得点数分别有6种,共会出现36种结果,其中落入阴影区域内的有8种,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,2).所以满足(a,b)∈A∩B的概率为836=29,

二、填空题:本大题共4个小题,每小题5分,共20分.

13.若实数x,y满足|x|≤2,|y|≤1,则任取其中x,y,使x2+y2≤1的概率为__________.

解析:点(x,y)在由直线x=±2和y=±1围成的矩形上或其内部,使x2+y2≤1的点(x,

y)在以原点为圆心,以1为半径的圆上或其内部,故所求概率为P=π4×2=π8.

答案:π8

14.从所有三位二进制数中随机抽取一个数,则这个数化为十进制数后比5大的概率是

________.

解析:三位二进制数共有4个,分别111(2), 110(2),101(2),100(2),其中111(2)与110(2)化为十

进制数后比5大,故所求概率为P=24=12.

答案:12

15.把一颗骰子投掷两次,第一次出现的点数记为m,第二次出现的点数记为n,方程

组mx+ny=3,2x+3y=2,只有一组解的概率是__________.

1718 解析:由题意,当m2≠n3,即3m≠2n时,方程组只有一解.基本事件总数为36,

满足3m=2n的基本事件有(2,3),(4,6)共两个,故满足3m≠2n的基本事件数为34个,

故所求概率为P=3436=1718.

16.在圆(x-2)2+(y-2)2=8内有一平面区域E:x-4≤0,y≥0,mx-y≤0(m≥0),点P是圆内的

任意一点,而且出现任何一个点是等可能的.若使点P落在平面区域E内的概率最

大,则m=__________.

0 解析:如图所示,当m=0时,平面区域E的面积最大,

则点P落在平面区域E内的概率最大.

三、解答题:本大题共6小题,共70分.

17.(10分)某公司在过去几年内使用某种型号的灯管1 000支,该公司对这些灯管的使用寿 命(单位:小时)进行了统计,统计结果如下表所示

分组 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+∞)

频数 48 121 208 223 193 165 42

频率[]

(1)将各组的频率填入表中;

(2)根据上述统计结果,计算灯管使用寿命不足1 500小时的频率;

(3)该公司某办公室新安装了这种型号的灯管15支,若将上述频率作为概率,估计经过1 500小时约需换几支灯管.

解析:

分组 [500,900) [900,1 100) [1 1001 300) [1 300,1 500) [1 500,1 700) [1 700,1 900) [1 900,+∞)

频数 48 121 208 223 193 165 42

[1] [2]  下一页


Tag:高三数学高三数学课本|基础知识|教案高中学习 - 高中数学 - 高三数学
上一篇:高三立体几何章末综合测试题